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ABSTRACT

This article introduces the notion of start string to formal language theory. It is usual to start
derivation from single nonterminal but in this article we study grammars where the derivation
start from string of nonterminals. This approach leads to infinite language hierarchy according
to length of start string.

1 INTRODUCTION

In classic formal language theory it is usual to start derivation from single nonterminal. It is
obvious because all grammar classes in Chomsky hierarchy generate the same language even if
they start from a string of nonterminals. In this article we present a right-linear grammar with
start string regulated by regular language which generate different languages when it starts from
strings of different lengths. Moreover these languages form infinite hierarchy according to the
length of their start string.

2 START STRING

Definition 2.1. Let n≥ 1. A right-linear grammar with a start string of length n, n-RLG for short,
is a quadruple G = (N,T,R,S), where N and T are alphabets such that N∩T = /0,S∈N+, |S| ≤
n, and R is a finite set of productions of the form A→ x, where A ∈ N and x ∈ T ∗(N∪{ε}). Set
V = T ∪N.

Let Ψ be an alphabet of rule labels such that card(Ψ) = card(R), and ψ be a bijection from R
to Ψ. For simplicity, to express that ψ maps a rule A → x ∈ R, to ρ, where ρ ∈ Ψ, we write
ρ.A→ x ∈ R; in other words, ρ.A→ x means ψ(A→ x) = ρ.

If ρ.A→ x ∈ R and u,v ∈V ∗, then we write uAv⇒ uxv [ρ] in G.

Let χ ∈ V ∗. Then G makes the zero-step derivation from χ to χ according to ε, symbolically
written as χ ⇒0 χ [ε]. Let there exist a sequence of derivation steps χ0,χ1, . . . ,χn for some
n ≥ 1 such that χi−1 ⇒ χi [ρi], where ρi ∈ Ψ, for all i = 1, . . . ,n, then G makes n derivation
steps from χ0 to χn according to ρ1 . . .ρn, symbolically written as χ0 ⇒n χn [ρ1 . . .ρn]. If for
some n≥ 0,χ0 ⇒n χn [ρ], where ρ ∈Ψ∗ and |ρ|= n, we write χ0 ⇒∗ χn [ρ].



We call a derivation S ⇒∗ w successful, if and only if, w ∈ T ∗.

Let Ξ be a control language over Ψ; that is, Ξ ∈Ψ∗.

Under the regulation by Ξ, the language that G generates is denoted by L(G,Ξ) and defined as

L(G,Ξ) = {w | S ⇒∗ w [ρ],ρ ∈ Ξ,w ∈ T ∗}.

Let i be a positive integer and X be a family of languages. Set

R(X , i) = {L | L = L(G,X),where G = (N,T,R,S) is a i-RLG}.

Specifically, R(REG, i) is central to this paper, where REG denotes the family of regular lan-
guages.

Definition 2.2. Let G = (N,T,R,S) be an n-RLG for some n ≥ 1 (See Definition 2.1). G =
(N1,N2, . . . ,Nn,T,R1,R2, . . . ,Rn,S) is a distributed n-RLG, n−disRLG for short, if

• N = N1∪N2∪ . . .∪Nn, where Ni,1≤ i≤ n are pairwise disjoint nonterminal alphabets,

• S = X1X2 . . .Xn, Xi ∈ Ni,1≤ i≤ n,

• R = R1∪R2∪ . . .∪Rn,
such that for every A→ xB ∈ Ri, A,B ∈ Ni, for some 1≤ i≤ n,x ∈ T ∗

and for every A→ a ∈ R, A ∈ N,a ∈ T ∗.

Set Ψi = {ρ | ρ.A→ aB ∈ Ri or ρ.A→ a ∈ Ri, where A,B ∈ Ni,a ∈ T ∗}.

Theorem 2.1. For all n≥ 1, L(n−disRLG) = L(n-RLG).

Proof. See [Rych–08].

Definition 2.3. Let i≥ 1 and X be a family of languages. Let L(G,Ξ) be a language generated
by G and regulated by Ξ (See definition 2.1). Set

• R(X , i) = {L | L = L(G,Ξ), where G = (N,T,R,S) is a i-RLG and Ξ ∈ X}.

• disR(X , i) = {L | L = L(G,Ξ), where G = (N1,N2, . . . ,Nn,T,R1,R2, . . . ,Rn,S) is
a i−disRLG and Ξ ∈ X}.

Definition 2.4. (See [Wood–73]) For n ≥ 1, an n-parallel right-linear grammar, n-PRLG for
short, is an (n+3)-tuple G = (N1, . . .Nn,T,S,P) where

• Ni,1≤ i≤ n are pairwise disjoint nonterminal alphabets,

• T is a terminal alphabet, N∩T = /0,

• S /∈ N1∪ . . .∪Nn is the start symbol,

• P is a finite set of rules. P contains three kinds of rules

1. S → X1 . . .Xn, Xi ∈ Ni,1≤ i≤ n,



2. X → aY, X ,Y ∈ Ni, for some 1≤ i≤ n,a ∈ T ∗, and

3. X → a, X ∈ Ni, for some 1≤ i≤ n,a ∈ T ∗.

For x,y ∈ (N∪T ∪{S})∗,x⇒ y if and only if

• either x = S and S → y ∈ P,

• or x = y1X1 . . .ynXn,y = y1x1 . . .ynxn, where yi ∈ T ∗,xi ∈ T ∗N∪T ∗,Xi ∈ Ni, and
Xi → xi ∈ P, 1≤ i≤ n.

parR(i) = {L | L = L(G), where G = (N1,N2, . . . ,Nn,T,R,S) is a i-PRLG}.

Theorem 2.2 (Wood hierarchy). For all i≥ 1, parR(i)⊂ parR(i+1).

Proof. See [Wood–73].

For more information about n-parallel right-linear grammars, see [Wood–73].

Lemma 2.1. Let i≥ 1. disR(REG, i)⊆ parR(i). That is,
for every n−disRLG G = (N1, . . . ,Nn,T,R1, . . . ,Rn,S) regulated by regular language Ξ there
exists equivalent n−PRLG G′ = (N′

1, . . . ,N
′
n,T

′,S′,P′) such that L(G) = L(G′).

Proof. Let Ξ = L(GΞ),GΞ = (NΞ,TΞ,RΞ,SΞ). Let R = R1∪R2∪ . . .∪Rn. We will define gram-
mar G′ = (N′

1, . . . ,N
′
n,T

′,S′,P′) this way:

• N′
1 = {[A,X ] | A ∈ N1,X ∈ NΞ},

• N′
i = Ni,2≤ i≤ n,

• T ′ = T ,

• P′1 = {([A1,X ],A2, . . . ,An)→ (t[B1,Y ],A2, . . . ,An) |
| Ai ∈ Ni,1≤ i≤ n, X ,Y ∈ NΞ and f .A1 → tB1 ∈ R1, X → fY ∈ RΞ,
t ∈ T ∗},

• P′2 = {([A1,X ],A2, . . . ,A j, . . . ,An)→ ([A1,Y ],A2, . . . , tB j, . . . ,An) |
| Ai ∈ Ni,1≤ i≤ n, 2≤ j ≤ n, X ,Y ∈ NΞ and
f .A j → tB j ∈ R j, X → fY ∈ RΞ, t ∈ T ∗},

• P′ = P′1∪P′2∪{S′→ [X1,SΞ]X2 . . .Xn | S = X1 . . .Xn ∈ G, Xi ∈ Ni, 1≤ i≤ n}.

Note that P′1 is a special case of P′2 with j = 1.

Let Ln(G) = {x | S ⇒n x in G, x ∈ {N ∪T}∗} and Ln(G′) = {x | S′ ⇒n+1 x in G′, x ∈ {N′ ∪
T ′}∗}. We will prove that Ln(G) = h(Ln(G′)) for every n ≥ 0, where h is surjective function
h : {N′

1∪ . . .∪N′
n∪T ′}→ {N1∪ . . .∪Nn∪T} defined as

h(w) =

{
A, if w ∈ N′

1,w = [A,Y ],
w, otherwise.



First we will prove that Ln(G)⊆ h(Ln(G′)) by induction on n:
Let n = 0. L0(G) = {X1X2 . . .Xn}, L0(G′) = {[X1,Y ]X2 . . .Xn} because S′→ [X1,Y ]X2 . . .Xn ∈ P′

and, therefore, h(L0(G′)) = {X1X2 . . .Xn}= L0(G).
Let us suppose that the claim holds for all n≤ k, where k is a non-negative integer.
Let n = k+1. Consider w∈ Lk+1(G) and a derivation S⇒k v⇒w in G, so that v⇒w [p], where
v = C1C2 . . .Ci−1XCi+1 . . .Cn, w = C1C2 . . .Ci−1tYCi+1 . . .Cn,C j ∈ N j∪{T}∗,1≤ j ≤ n, p.X →
tY ∈ R,A→ pB ∈ RΞ. From the induction step, v ∈ h(Lk(G′)).
As ([C1,A]C2 . . .Ci−1XCi+1 . . .Cn)→ ([C1,B]C2 . . .Ci−1tYCi+1 . . .Cn) ∈ P′, w ∈ h(Lk+1(G′)).

Now we prove that Ln(G)⊇ h(Ln(G′)) by induction on n≥ 0:
Let n = 0. By analogy with the previous part of this proof.
Let us suppose that our claim holds for all n≤ k, where k is a non-negative integer.
Let n = k +1. Consider w ∈ Lk+1(G′) and a derivation S ⇒k v⇒ w in G′, where
v = [C1,A]C2 . . .Ci−1XCi+1 . . .Cn, w = [C1,B]C2 . . .Ci−1tYCi+1 . . .Cn,C j ∈N j∪{T}∗,1≤ j≤ n.
From the induction step, h(v) ∈ Lk(G). Since p.X → tY ∈ R,A → pB ∈ RΞ, we have h(w) ∈
Lk+1(G).

Lemma 2.2. Let i≥ 1. disR(REG, i)⊇ parR(i) That is,
for every n-PRLG G′ = (N′

1, . . . ,N
′
n,T

′,S′,P′) there exists equivalent n−disRLG
G = (N1, . . . ,Nn,T,R1, . . . ,Rn,S) regulated by regular language Ξ such that L(G) = L(G′).

Proof. G is defined in this way

• Ni = N′
i ,1≤ i≤ n;

• T = T ′;

• S = S′;

• Ri = {ri j.Ai → tiBi | for the jth rule (A1, . . . ,Ai, . . . ,An) → (t1B1, . . . , tiBi, . . . , tnBn) ∈
P′, ti ∈ T ∗, 1≤ j ≤ |P′|}, 1≤ i≤ n.

and Ξ = L(GΞ),GΞ = (NΞ,TΞ,RΞ,SΞ) is defined

• NΞ = {Q}∪{Qi j | 1≤ i≤ n−1, 1≤ j ≤ |P′|};

• TΞ = {ri j | 1≤ i≤ n, 1≤ j ≤ |P′|};

• RΞ = {Q→ r1 jQ1 j | 1≤ j ≤ |P′|}∪
∪{Qi j → ri+1 jQi+1 j | 1≤ i≤ n−2, 1≤ j ≤ |P′|}∪
∪{Qn−1 j → rn jQ | 1≤ j ≤ |P′|};

• SΞ = Q.

Theorem 2.3. For all i≥ 1, disR(REG, i) = parR(i).

Proof. This theorem directly follows from Lemma 2.1 and Lemma 2.2



The main result of this paper follows next.

Theorem 2.4. For all i≥ 1, R(REG, i)⊂R(REG, i+1).

Proof. This theorem follows from Theorems 2.1, 2.2 and 2.3.

3 CONCLUSION

As we show in Theorem 2.4 right-linear grammars with start string of length n regulated by
regular language form an infinite hierarchy of languages according to the length of start string.
This result is surprising because all classic language families generate the same language even
if we start derivation from a start string.
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